Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy.
نویسندگان
چکیده
Familial platelet disorder with propensity to myeloid malignancy (FPD/AML) is an autosomal dominant syndrome characterized by platelet abnormalities and a predisposition to myelodysplasia (MDS) and/or acute myeloid leukemia (AML). The disorder, caused by inherited mutations in RUNX1, is uncommon with only 14 pedigrees reported. We screened 10 families with a history of more than one first degree relative with MDS/AML for inherited mutations in RUNX1. Germ- line RUNX1 mutations were identified in 5 pedigrees with a 3:2 predominance of N-terminal mutations. Several affected members had normal platelet counts or platelet function, features not previously reported in FPD/AML. The median incidence of MDS/AML among carriers of RUNX1 mutation was 35%. Individual treatments varied but included hematopoietic stem cell transplantation from siblings before recognition of the inherited leukemogenic mutation. Transplantation was associated with a high incidence of complications including early relapse, failure of engraftment, and posttransplantation lymphoproliferative disorder. Given the small size of modern families and the clinical heterogeneity of this syndrome, the diagnosis of FPD/AML could be easily overlooked and may be more prevalent than previously recognized. Therefore, it would appear prudent to screen young patients with MDS/AML for RUNX1 mutation, before consideration of sibling hematopoietic stem cell transplantation.
منابع مشابه
Familial myelodysplasia and acute myeloid leukaemia--a review.
Familial occurrence of myelodysplasia (MDS) and/or acute myeloid leukaemia (AML) is rare but can provide a useful resource for the investigation of predisposing mutations in these myeloid malignancies. To date, examination of families with MDS/AML has lead to the detection of two culprit genes, RUNX1 and CEBPA. Germline mutations in RUNX1 result in familial platelet disorder with propensity to ...
متن کاملFamilial myelodysplastic syndromes: a review of the literature.
Familial cases of myelodysplastic syndromes are rare, but are immensely valuable for the investigation of the molecular pathogenesis of myelodysplasia in general. The best-characterized familial myelodysplastic syndrome is that of familial platelet disorder with propensity to myeloid malignancy, caused by heterozygous germline RUNX1 mutations. Recently, there has been an increase in the number ...
متن کاملGenetic basis of myeloid transformation in familial platelet disorder/acute myeloid leukemia patients with haploinsufficient RUNX1 allele
Familial platelet disorder/acute myeloid leukemia (FPD/AML) is an autosomal dominant inherited disorder characterized by thrombocytopenia and high propensity to various hematological malignancies. FPD/AML is caused by monoallelic mutations of RUNX1, which are in many cases point mutations disrupting DNA-binding or transactivating capacities of RUNX1, and these mutations are considered to act in...
متن کاملDown-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia.
RUNX1 encodes a DNA-binding α subunit of the core-binding factor, a heterodimeric transcription factor. RUNX1 is a master regulatory gene in hematopoiesis and its disruption is one of the most common aberrations in acute leukemia. Inactivating or dominant-negative mutations in the RUNX1 gene have been also identified in pedigrees of familial platelet disorders with a variable propensity to deve...
متن کاملBone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation
A subset of patients with familial platelet disorder with propensity to myeloid malignancy and germline RUNX1 mutation develops hematological malignancies, often myelodysplastic syndrome/acute myeloid leukemia, currently recognized in the 2016 WHO classification. Patients who develop hematologic malignancies are typically young, respond poorly to conventional therapy, and need allogeneic stem c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 112 12 شماره
صفحات -
تاریخ انتشار 2008